SILDENAFIL INCREASES STROKE VOLUME DURING EXERCISE IN PATIENTS WITH CHRONIC THROMBOEMBOLIC PULMONARY HYPERTENSION

Guido Claessen1, Andre La Gerche1, Jan Bogaert2, Piet Claus3, Hein Heidbuchel1 and Marion Delcroix4

1 Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
2 Department of Radiology, University Hospitals Leuven, Leuven, Belgium
3 Department of Cardiovascular Imaging and Dynamics, University of Leuven, Leuven, Belgium
4 Department of Pneumology, University Hospitals Leuven, Leuven, Belgium

Objective: Stroke volume (SVi) is an important prognostic factor in patients with pulmonary hypertension and is typically assessed at rest. We sought to evaluate whether a single dose of oral sildenafil can influence the SVi response to exercise in patients with chronic thromboembolic pulmonary hypertension (CTEPH).

Methods: Fourteen CTEPH patients and 8 healthy controls underwent cardiac magnetic resonance (CMR) imaging at rest and during incremental supine bicycle exercise to near-maximal exertion with simultaneous invasive hemodynamic monitoring. During real-time exercise and free-breathing, left and right ventricular (LV and RV) volumes were derived from real-time cine imaging and registered with simultaneous invasive measures of mean pulmonary artery pressure (mPAP). Exercise was performed at baseline and then following administration of 50mg oral sildenafil.

Results: As illustrated in Figure 1, CTEPH patients had a greater increase in mPAP relative to cardiac output (CO) than controls at baseline (8.6±1.9 vs. 1.5±0.3 mmHg/l/min; P=0.002). In addition, SVi and RV ejection fraction (RVEF) increased during exercise in controls, but not in CTEPH patients (interaction group*workload P<0.0001). Sildenafil decreased the slope of the mPAP/CO relationship both in CTEPH patients (P=0.02) and in controls (P=0.09). However, this was associated with an increased SVi in CTEPH patients (P<0.05), but not in controls. Within the CTEPH cohort, the increase in SVi following sildenafil was greater during near-maximal exercise-intensity than at rest (P=0.02).
Conclusion: Sildenafil improves RV function and stroke volume during exercise in patients with CTEPH, but not in healthy subjects.
Figure 1

(A) SVI (ml/m²) vs. Workload (% of Pmax) for controls and CTEPH.

(B) mPAP (mmHg) vs. Cardiac output (L/min) for CTEPH and controls, with significance levels of *P=0.02 and *P=0.09.